Meshes
 Lecture 20

Robb T. Koether
Hampden-Sydney College

Mon, Oct 21, 2019

Outline

(9) Standard 3D Surfaces
(2) Equations of Surfaces
(3) The Normals

4 Review of Derivatives
(5) Assignment

Outline

(1) Standard 3D Surfaces

(2) Equations of Surfaces

(3) The Normals

4 Review of Derivatives
(5) Assignment

Simple 2D and 3D Surfaces

- Whenever possible, we will build complex surfaces from simple surfaces.
- The standard simple surfaces are
- Square
- Cylinder
- Disk
- Cone
- Paraboloid
- Sphere
- Hyperboloids (or one or two sheets)
- Torus

Simple 3D Surfaces

Cylinder: $x^{2}+z^{2}=1,0 \leq y \leq 1$

Simple 3D Surfaces

Disk: $x^{2}+z^{2} \leq 1, y=0$

Simple 3D Surfaces

Cone: $x^{2}+z^{2}=y^{2}, 0 \leq y \leq 1$

Simple 3D Surfaces

Paraboloid: $x^{2}+z^{2}=y, 0 \leq y \leq 1$

Simple 3D Surfaces

Sphere: $x^{2}+y^{2}+z^{2}=1$

Simple 3D Surfaces

Hyperboloid of one sheet: $x^{2}+z^{2}=y^{2}+1,-\sqrt{3} \leq y \leq \sqrt{3}$

Simple 3D Surfaces

Hyperboloid of two sheets: $x^{2}+z^{2}=y^{2}-1,-\sqrt{17} \leq y \leq \sqrt{17}$

Simple 3D Surfaces

Torus: $4\left(x^{2}+z^{2}\right)=\left[\left(r^{2}-1\right)-\left(x^{2}+y^{2}+z^{2}\right)\right]^{2}$

Outline

(1) Standard 3D Surfaces

(2) Equations of Surfaces

(3) The Normals

4 Review of Derivatives
(5) Assignment

Surfaces Defined by Functions

- Let $y=f(x, z)$ be a function of two variables.
- The function $f(x, z)$ gives the height of the surface over the point $(x, 0, z)$ in the $x z$-plane.
- For every point (x, z) in the plane $y=0$, the function produces a y-coordinate, giving a point (x, y, z) in space.

Examples

Examples (Surfaces Defined by Functions)

- The function $f(x, z)=4-x-z$ defines a plane.
- The function $f(x, z)=\sqrt{1-x^{2}-z^{2}}$ defines a hemisphere.
- The function $f(x, z)=\sqrt{1-x^{2}}$ defines a half-cylinder.

Creating a Rectangular Mesh

- We can create a rectangular mesh for a surface represented by $y=f(x, z)$ over a rectangular region $[a, b] \times[c, d]$.
- Subdivide the range $[a, b]$ of values of x into $a=x_{0}, x_{1}, \ldots, x_{m}=b$.
- Subdivide the range $[c, d]$ of values of z into $c=z_{0}, z_{1}, \ldots, z_{n}=d$.

Outline

(1) Standard 3D Surfaces

(2) Equations of Surfaces
(3) The Normals

4 Review of Derivatives
(5) Assignment

Normals

- In order for the lighting effects to be computed properly, we must also create a unit normal vector at each grid point.
- This normal should be perpendicular to the tangent plane.
- To compute it, we take the cross product of two vectors lying in the tangent plane.

Tangent Planes

- Let \mathbf{u} be the tangent vector parallel to the $y z$-plane, and therefore perpendicular to the x-axis.
- It is constant in the x-direction.
- Its "slope," or rate of change, of y in the z direction, is $\frac{\partial f}{\partial z}$.
- Therefore,

$$
\mathbf{u}=\left(0, \frac{\partial f}{\partial z}, 1\right)
$$

- Similarly, if \mathbf{v} is the tangent vector parallel to the $x y$-plane, then

$$
\mathbf{v}=\left(1, \frac{\partial f}{\partial x}, 0\right)
$$

The Normal Vector

- Thus, a normal vector \mathbf{n} is given by

$$
\begin{aligned}
\mathbf{n} & =\mathbf{u} \times \mathbf{v} \\
& =\left(0, \frac{\partial f}{\partial z}, 1\right) \times\left(1, \frac{\partial f}{\partial x}, 0\right) \\
& =\left(-\frac{\partial f}{\partial x}, 1,-\frac{\partial f}{\partial z}\right) .
\end{aligned}
$$

- Normalize this to the unit vector $\mathbf{N}=$ normalize(\mathbf{n}).

The Normal Vector

The surface

The Normal Vector

The vector $\mathbf{u}=\left(0, \frac{\partial f}{\partial z}, 1\right)$

The Normal Vector

The vector $\mathbf{v}=\left(1, \frac{\partial f}{\partial x}, 0\right)$

The Normal Vector

The normal vector $\mathbf{n}=\left(-\frac{\partial f}{\partial x}, 1,-\frac{\partial f}{\partial z}\right)$

Outline

(1) Standard 3D Surfaces

(2) Equations of Surfaces

(3) The Normals

4 Review of Derivatives
(5) Assignment

Review of Derivatives

Function	Derivative
x^{n}	$n x^{n-1}$
\sqrt{x}	$\frac{1}{2 \sqrt{x}}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$f(x)^{n}$	$n f(x)^{n} f^{\prime}(x)$
$\sqrt{f(x)}$	$\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$
$f(x) g(x)$	$f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

A Hemisphere

Example (A Hemisphere)

- Let $y=\sqrt{1-x^{2}-z^{2}}$.
- Then

$$
\frac{\partial f}{\partial x}=-\frac{x}{\sqrt{1-x^{2}-z^{2}}}=-\frac{x}{y}
$$

and

$$
\frac{\partial f}{\partial z}=-\frac{z}{\sqrt{1-x^{2}-z^{2}}}=-\frac{z}{y} .
$$

- Therefore,

$$
\mathbf{n}=\left(\frac{x}{y}, 1, \frac{z}{y}\right)
$$

A Hemisphere

Example (A Hemisphere)

- Then

$$
|\mathbf{n}|=\sqrt{\frac{x^{2}}{y^{2}}+1+\frac{z^{2}}{y^{2}}}=\sqrt{\frac{x^{2}+y^{2}+z^{2}}{y^{2}}}=\frac{1}{y} .
$$

- The normalized vector is $\mathbf{N}=(x, y, z)$.

The Paraboloid

Example (The Paraboloid)

- Let $y=x^{2}+z^{2}$.
- Then

$$
\frac{\partial f}{\partial x}=2 x
$$

and

$$
\frac{\partial f}{\partial z}=2 z
$$

- Therefore,

$$
\mathbf{n}=(-2 x, 1,-2 z)
$$

The Paraboloid

Example (The Paraboloid)

- Then

$$
|\mathbf{n}|=\sqrt{4 x^{2}+1+4 z^{2}}=\sqrt{1+4\left(x^{2}+z^{2}\right)}=\sqrt{1+4 y}
$$

- The normalized vector is

$$
\mathbf{N}=\left(-\frac{2 x}{\sqrt{1+4 y}}, \frac{1}{\sqrt{1+4 y}},-\frac{2 z}{\sqrt{1+4 y}}\right) .
$$

Outline

(1) Standard 3D Surfaces

(2) Equations of Surfaces

(3) The Normals
4) Review of Derivatives
(5) Assignment

Assignment

Assignment
 - Assignment 17.

